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Abstract
The analogue of the charge-conjugation modular invariant for rational
logarithmic conformal field theories is constructed. This is done by
reconstructing the bulk spectrum from a simple boundary condition (the
analogue of the Cardy ‘identity brane’). We apply the general method to
the c1,p triplet models and reproduce the previously known bulk theory for
p = 2 at c = −2. For general p we verify that the resulting partition functions
are modular invariant. We also construct the complete set of 2p boundary
states, and confirm that the identity brane from which we started indeed exists.
As a by-product we obtain a logarithmic version of the Verlinde formula for
the c1,p triplet models.

PACS numbers: 11.25.Hf, 02.40.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last few years logarithmic conformal field theories have increasingly attracted attention.
They appear in various models of statistical physics, for example in the theory of (multi)critical
polymers [1–3], percolation [4–6] and various critical (disordered) models [7–16]. During
the last year lattice realizations of logarithmic conformal field theories have also been found
[17–19]. In a separate development WZW models on supergroups (that also exhibit logarithmic
behaviour) have been more intensively studied [20–24]. These supergroup theories are likely
to play an important role for the world-sheet description of string theory on AdS spaces.
Finally, logarithmic conformal field theories are also interesting from an abstract point of
view since they fall outside the well-studied class of rational conformal field theories and thus
represent a first step towards understanding at least some aspects of non-rational theories. The
abstract structure of logarithmic conformal field theories has also been studied, starting from
[25, 26], and more recently in the mathematical literature [27–33]. Reviews about different
aspects of logarithmic conformal field theories are [34–36].

1751-8113/08/075402+29$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/7/075402
mailto:gaberdiel@itp.phys.ethz.ch
mailto:ingo.runkel@kcl.ac.uk
http://stacks.iop.org/JPhysA/41/075402


J. Phys. A: Math. Theor. 41 (2008) 075402 M R Gaberdiel and I Runkel

While there has recently been some interesting progress with the supergroup theories, the
best understood logarithmic conformal field theory continues to be the rational triplet theory
at c = −2 [37]. It is the only logarithmic conformal field theory for which all structures have
been understood in detail from a conformal field theory point of view. In particular, the fusion
rules of this theory were derived from first principles in [38], and a consistent local theory,
whose amplitudes satisfy crossing symmetry, has been constructed by solving the conformal
bootstrap in [39]. More recently, a careful analysis of the boundary theory has been performed
in [40], and a consistent set of boundary states has been found. (Some of these results were
anticipated in [41], see also [42–45] for earlier discussions.)

The local bulk theory of the triplet theory [39] is actually quite complicated—its only
simple description is in terms of the symplectic fermions [3, 46] that are quite special for
the c = −2 triplet theory—but the boundary theory of [40] turned out to be remarkably
simple. The boundary states are labelled by the irreducible representations of the triplet
theory, while the open string spectrum consists precisely of the representations that appear in
the fusion of these irreducible representations. (These representations involve then in general
indecomposable logarithmic representations.) In this paper, we show how the bulk theory can
actually be obtained in a very natural manner from the boundary theory. Our analysis applies
to all rational logarithmic conformal field theories; for the case of the c1,p models we can
describe the resulting bulk theory very explicitly, and for p = 2 it coincides with the original
c = −2 bulk theory of [39].

Our method is based on insights into the general structure of conventional (non-
logarithmic) rational conformal field theories that have been obtained during the last few
years [47–50]. In particular, it has become clear that a good way to describe a given rational
conformal field theory is by starting from its boundary theory: given the spectrum of boundary
fields on a single boundary condition (that preserves the full chiral algebra) as well as the
associative operator product of these fields, one can reconstruct the bulk theory for which this
boundary theory describes an allowed boundary condition. In particular, this allows one to
solve the complicated conformal bootstrap equations in terms of the much simpler problem of
constructing an associative operator product on the boundary.

The basic idea behind this reconstruction can be described as follows. One can argue on
general grounds that the disc correlation functions that involve one bulk field and one boundary
field are non-degenerate in the bulk field insertion. This is to say, for any non-trivial bulk
field there exists a boundary field such that the corresponding disc correlator does not vanish.
Knowing the boundary spectrum thus gives constraints on the possible size of the bulk theory.
Furthermore, the correlation functions involving one bulk field and two boundary fields must
essentially be independent of the order in which the latter appear on the boundary since one
can take one of them around the circle (see figure 2). It was shown in [47, 50] that in the
non-logarithmic rational case the bulk theory is then simply the largest possible representation
of the two chiral algebras that satisfies these two constraints. Furthermore one can determine
from these data also the bulk correlation functions, etc.

While the corresponding statement is not yet known for the logarithmic case (that falls
outside the mathematical analysis of [47, 50]), it is clear that these two conditions also have
to hold in the general (logarithmic) situation. We can therefore use these ideas to constrain
the possible spectrum of the bulk theory starting from a boundary condition. Given the
above observations about the boundary theory of the c = −2 triplet model, it seems very
likely that at least all c1,p triplet models will have a boundary condition whose boundary
spectrum consists just of the vacuum representation of the triplet algebra. (This is the
boundary condition associated with the irreducible vacuum representation.) Starting from
such a boundary condition we can analyse the above constraints and construct the largest
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space that is compatible with them. For the specific case of the c1,p triplet models (for which
some aspects of the allowed representations are known) we can then be even more specific
and describe the resulting bulk space very explicitly (see (4.22)). As we show in detail, it
leads to a modular invariant partition function and supports boundary conditions in one-to-one
correspondence with the irreducible representations of the triplet algebra. This gives strong
support to the assertion that this describes in fact the correct bulk theory. It also reduces to
the known bulk theory [39] for c = −2 and is compatible with the predictions (based on the
analogy with supergroups) of [24].

In the usual rational case, the bulk theory corresponding to the boundary condition whose
spectrum consists just of the vacuum representation itself, is the charge-conjugation modular
invariant [51, 52]. The above theories should therefore be thought of as the analogue of the
charge-conjugation construction. One may suspect that there will also be other consistent bulk
theories (with other modular invariant partition functions [29, 34, 53]). It would be interesting
to study this for the example of the triplet theories.

As a by-product of our analysis we find an expression for the boundary states of the c1,p

models in terms of the S-matrices. Since the open string multiplicities are determined in terms
of the fusion rules, this then leads to a Verlinde-like formula for the fusion rules of these
models. (More precisely, the formula describes the product in the associated Grothendieck
ring.) Given the abstract form of the formula it is very natural to suspect that it will generalize
to other logarithmic rational conformal field theories.

The paper is organized as follows. In section 2, we explain the general method of
reconstructing the bulk theory from a given boundary condition. In section 3, we concentrate
on the case that the boundary only has the vacuum representation in its boundary spectrum
and derive the constraints on the possible bulk space in the general logarithmic case. We also
give a fairly explicit description of the largest such space. In section 4, these ideas are then
applied to the c1,p triplet models. In particular, we give a detailed description of the bulk
spectrum for general p in section 4.3, and show that it reproduces the known result for p = 2.
We also show in section 4.5 that it leads to a modular invariant partition function. Finally, in
section 5 we analyse the Cardy condition for this bulk spectrum, and show how to construct
boundary states in one-to-one correspondence with the irreducible representations. We also
discuss the Verlinde formula for logarithmic rational conformal field theories there. Section 6
contains our conclusions. There are a number of appendices in which some of the more
technical material is described. Among other things, we also conjecture there the fusion rules
for the general Wp triplet algebras at c = c1,p (see (C.4), (C.6) and (C.8)).

2. Constructing the space of bulk states

In this section, we will generalize one key element of non-logarithmic rational conformal field
theories to the logarithmic case, namely the construction of the space of bulk fields from a
given algebra of boundary fields [47].

2.1. The bulk space from disc amplitudes

Suppose we are given a conformal field theory (logarithmic or not) that is defined on surfaces
with (and without) boundaries. In particular the theory is defined on the unit disc, where at
the boundary of the disc we have chosen one of the possible boundary conditions (that we
shall denote by γ ). Consider now the correlator involving an arbitrary bulk field in the interior
of the disc, together with a single boundary field on the boundary. By the usual SU(1, 1)

symmetry of disc correlation functions, we may assume without loss of generality that the
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Figure 1. The correlator of two bulk fields on the complex plane with a little hole can be written as
a sum of products of disk correlators by factorizing along the dashed interval. (All factors arising
from the conformal transformations to the disc have been absorbed into the bases ψα and ψ̄α .)

bulk field is inserted at z = 0, while the boundary field sits at z = 1. This correlator defines a
bilinear pairing

b : Hbulk × Hbnd → C, b(φ,ψ) = 〈φ(0)ψ(1)〉γ , (2.1)

where Hbulk is the space of bulk fields, while Hbnd denotes the space of boundary fields on the
boundary γ .

We will now argue that this pairing is non-degenerate in the first argument. This means
that for any nonzero bulk field φ, there exists a boundary field ψ such that the correlator does
not vanish, b(φ,ψ) �= 0. To see this we recall that, by definition, the two-point functions
on the sphere define a non-degenerate bilinear pairing on the space of bulk fields. (This is to
say, if a bulk field φ vanishes in all two-point functions on the sphere, then we have in fact
φ = 0.) This property should not change if we consider instead the two-point function on the
sphere with a little boundary circle around some point p far away from the insertion points of
the bulk fields. But then we can use factorization along an interval starting and ending on this
boundary circle to express the correlation function as a sum over products of disc correlators
(see figure 1). It is then clear that the bulk-boundary correlators must be non-degenerate in the
bulk fields in order for the above two-point function to be non-degenerate. This proves that the
bilinear pairing b is non-degenerate with respect to the first argument. We note in passing that
the argument does not imply that b must be non-degenerate in the boundary fields as well; in
fact, this is not true in general. (Consider for example a superposition of boundary conditions
and take ψ to be a boundary changing operator. Then b(φ,ψ) = 0 for all bulk fields φ.)

If we are given a boundary condition γ with some space of boundary fields Hbnd, the
condition that the bulk-boundary correlation functions must be non-degenerate in the bulk
fields will give restrictive constraints on the structure of the bulk space Hbulk. This will in
particular be the case if Hbnd is rather small, for example if it just consists of the chiral algebra
V of the theory itself. One can then turn the logic around and ‘reconstruct’ the bulk space
from the boundary condition. This is what we shall be doing in the following. First, however,
we briefly want to elaborate on the general situation.

2.2. Constraints on the bulk space from a generic brane

We denote the chiral algebra of the bulk theory (i.e. the conformal vertex algebra of the
holomorphic degrees of freedom) by V , and by V × V̄ the holomorphic and anti-holomorphic
copy of V in the bulk. We shall always consider boundary conditions that preserve V; thus we
assume that for any holomorphic field W of V we have

W(z) = W̄ (z̄), z = z̄, (2.2)

4
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Figure 2. A constraint on the possible bulk fields φ: Inserting two boundary fields in reversed
order is equivalent to analytic continuation around the disk. The two disk correlators are fixed
separately by b and the operator product expansion on Hbnd.

where W̄ is the corresponding field in V̄ . (We have written this condition for the case where
instead of the disk we are considering the upper half plane with boundary the real axis.) The
space of boundary fields Hbnd is then a representation of V; as usual, the operator product on
Hbnd must be associative.

The arguments of the previous subsection now imply that the space of bulk fields Hbulk

must have the property that:

(1) There exists a pairing b : Hbulk × Hbnd → C compatible with the action of V and
non-degenerate in the first argument.

The compatibility condition with the V-action follows from the usual contour deformation
arguments involving the holomorphic fields in V; it will be given in more detail in section 3.1
and appendix A. Using the associativity of the operator product expansion on the boundary, the
pairing b then also determines uniquely the disk correlator of an arbitrary number of boundary
fields with one bulk field. A second constraint is then:

(2) A disk correlator with bulk insertion φ(0) and boundary insertions ψ(θ1)ψ
′(θ2) has to

be related to the correlator with reversed boundary insertions ψ ′(θ1)ψ(θ2) by analytic
continuation (see figure 2).

This second condition is just one of the sewing constraints for conformal field theories with
boundary [54, figure 9(d)]. For rational conformal field theories, using the language of
[47, section 5.3], it amounts to the statement that bulk fields are in the image of a certain
projector, while in the approach of [55] it is definition 5.11.

For non-logarithmic rational conformal field theories one can show that Hbulk is uniquely
determined by the boundary condition γ (i.e. by the associative algebra of boundary fields
on γ ), and that it is simply the largest V × V̄-representation that satisfies these constraints
(see [47, lemma 5.6] and [50]). While we do not yet know how to prove the corresponding
statement in the general logarithmic case, it is clear that any consistent Hbulk must satisfy at
least these constraints. Furthermore the examples we shall study below suggest that Hbulk is
again (also in the logarithmic case) simply the largest V × V̄-representation that satisfies (1)
and (2).

3. The identity brane

We now want to discuss the construction of the bulk space for the simplest case where the
boundary spectrum consists just of the vacuum representation of the chiral algebra, i.e. for

5



J. Phys. A: Math. Theor. 41 (2008) 075402 M R Gaberdiel and I Runkel

which Hbnd = V . In the non-logarithmic rational case such a brane exists in the charge
conjugation theory, namely as the Cardy brane associated with the vacuum representation
[56]. For the logarithmic triplet model at c = −2 for which the boundary conditions were
analysed in detail in [40], we also found one such brane.

In the following we shall thus assume that we have a boundary condition γ for which
Hbnd = V . We want to construct a bulk theory Hbulk that satisfies conditions (1) and (2) relative
to this boundary. Since Hbnd = V , condition (2) is simply implied by the fact that Hbulk is a
representation of V × V̄ . Thus we only need to find a solution to condition (1). To this end
we start with some large space of potential bulk states Ĥ. We then calculate the correlation
functions of bulk states in Ĥ on the disc with the boundary condition γ ; these are determined
by the chiral symmetry up to some coupling constants (normalizations of three-point blocks).
For any choice of these coupling constants we then find the subspace N ⊂ Ĥ of potential
bulk states that vanishes in all such disc correlation functions; for the given choice of coupling
constants the actual bulk space is thus the quotient Hbulk = Ĥ/N . Obviously, the null-space
N (and therefore Hbulk) depends on the choice of these coupling constants, but as we shall
see, the resulting space is essentially independent of these choices as long as we pick generic
values. We thus define the bulk space to be the largest such space as we vary the coupling
constants. For the c1,p triplet models we will see in sections 4 and 5 that the resulting space
leads to a modular invariant partition function and gives rise to the expected boundary states,
in particular one with Hbnd = V . The fact that this last boundary condition satisfies the Cardy
constraint is not a priori guaranteed, and hence provides a consistency check on our approach.

After this informal description of the strategy, we now want to give more details of the
construction.

3.1. The universal property defining Hbulk

As we have just mentioned we shall from now on assume that Hbnd is just the chiral algebra
itself Hbnd = V . Let us start with a simple ansatz for the space of potential bulk states Ĥ,
namely that Ĥ is the direct sum of tensor products of representations of V and V̄; a particular
term in this sum will thus be of the form M ⊗ N̄ , where M and N are representations of
V . (The bar on N indicates that it describes the right-moving degrees of freedom that form
a representation of V̄ .) A disk correlator with one bulk insertion in M ⊗ N̄ at z = 0 and
a boundary insertion at z = 1 can be mapped conformally to the upper half plane with a
boundary insertion at 0 and a bulk insertion at i. Since the boundary condition preserves the
chiral algebra (2.2) we can use the doubling trick [57] to write this correlator as the three-
point block on the complex plane with an insertion of V at 0, while M and N are inserted at
±i. Every such conformal block β defines a multilinear map M × N × V → C that obeys
invariance conditions with respect to the V-actions which are listed explicitly in appendix A.
Furthermore, the three-point block β gives rise to a bulk-boundary correlator, and thus to an
associated pairing bβ : (M ⊗ N̄) × V → C, (a ⊗ b, v) �→ β(a, b, v).

Similarly, if Ĥ = ⊕
k Mk ⊗ N̄k then the pairings that are compatible with the V-action are

of the form
∑

k bβk
, where βk is a three-point block Mk × Nk × V → C. In fact, the possible

pairings can also be described for an arbitrary V× V̄-representation Ĥ, not just one of the form⊕
k Mk ⊗ N̄k; as is shown in appendix A, they have to satisfy condition (A.3). We denote the

space of all such pairings by B(Ĥ).
Since we are only interested in the non-degeneracy of b in the first (bulk) entry, it is

convenient to associate with each b ∈ B(Ĥ) the map b : Ĥ → V∗ given by b(φ) = b(φ, ·).
Condition (1) of the previous section is then just the requirement that b must be injective (i.e.
that its kernel is trivial). In general, this will not be the case for our ansatz Ĥ, but it is easy to
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rectify this problem. We denote the kernel of b by N = ker(b) ⊂ Ĥ. Then for the quotient
space H = Ĥ/N the induced pairing on H × V is by construction non-degenerate in the first
argument. As is shown in appendix B, H is still a representation of V × V̄ since N is; this is
for example necessary to guarantee that condition (2) continues to hold.

Obviously, the space H we end up with depends to a certain extent on the choice of the
three-point blocks βk . (For example, we could take all βk = 0, in which case H would be
the zero space.) We expect that the actual bulk space that contains the boundary condition
in question is as large as it can be. In order to make this precise we need to define what we
mean by a ‘maximal solution’. A V × V̄ representation H together with a pairing b ∈ B(H)

is a maximal solution to (1) if and only if b is injective and the following universal property
holds: for any pair (H1, b1) such that b1 ∈ B(H1) and b1 : H1 → V∗ is injective there exists
a unique injective intertwiner f : H1 → H such that the following diagram commutes:

H V∗

H1

b

∃!f b1 (3.1)

In fact, if an intertwiner f exists, it is automatically unique and injective because both b and b1

are injective. Furthermore, a maximal solution to condition (1) is unique up to isomorphism.

3.2. The bulk space in terms of projective covers

What we have said so far is completely general, but in order to be more specific we need to
assume some properties about the representations of the chiral algebra V (more precisely, the
logarithmic modules [27], or generalized modules [33, section 2]). We assume that

(i) V has only finitely many inequivalent irreducible representations.
(ii) Each V-representation M has a projective cover P(M).

As will become clear in section 4, the triplet algebras Wp for p � 2 satisfy these conditions.
More abstractly, one may expect that the representation category of a rational logarithmic
conformal field theory is described by a finite tensor category (see, e.g., [32, 58]); then
these conditions are automatically satisfied. We shall also use the following properties of
V × V̄-representations3:

(I) Every V × V̄-representation X is isomorphic to a quotient of the tensor product (over C)
MX ⊗ N̄X of two V-representations MX and NX by a subrepresentation.

(II) The space of intertwiners HomV×V̄(M ⊗ N̄,M ′ ⊗ N̄ ′) is isomorphic to the tensor product
of intertwiner spaces HomV(M,M ′) ⊗ HomV(N,N ′).

With these preparations we now proceed as follows. As our starting point we take the
space of potential bulk states to be

Ĥ =
⊕
k∈Irr

Pk ⊗ P̄ ∗
k , (3.2)

where Irr labels the finitely many irreducible representations Ui, i ∈ Irr of V . Here Pk is the
projective cover of Uk , and P ∗

k is the conjugate representation to Pk . (More precisely, Pk is

3 These should hold for reasonable chiral algebras V . For example (II) follows if the intertwiner spaces HomV (M, N)

are finite dimensional, and the generalized L0-eigenspaces of the V-representations are finite dimensional.
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the contragredient module to Pk—for a definition see, e.g., [33, section 2].) The bar over
the second space in the tensor product indicates that these degrees of freedom refer to right
movers.

We also need to make an ansatz for the pairing b, or equivalently for the three-point
blocks βk . In fact, there is an almost canonical choice we can make: the space of three-point
blocks involving any V-representation M, its dual representation M∗ and V contains a preferred
element that we shall denote by evM . To define evM we use a conformal transformation to
move the insertion points of the three-point block such that M∗ is inserted at infinity, while V
is inserted at z = 1 and M at z = 0. The three-point block evM is then uniquely determined
by the condition that upon inserting the vacuum vector � at z = 1, the resulting paring
M∗ × M → C is just the canonical pairing of a vector space with its dual. (The invariance
conditions of appendix A then determine evM for any other combination of states.)

For the case at hand M = Pk , and we can thus define the pairing b on Ĥ × V to be given
by

bev = bβ with β =
∑
k∈Irr

evPk
. (3.3)

The kernel Nev of bev is non-trivial in general, but as we shall see, the resulting quotient space

Hbulk = Ĥ/Nev (3.4)

will define a maximal solution to (1). Before we can prove this statement, we need to make a
few observations about a certain class of three-point blocks.

3.3. Three-point blocks and the kernel of bev

Suppose we have a three-point block β: M×N×V → C. Since one of the three representations
(namely V) is just the vacuum representation, every such three-point block defines a linear
map β�: N → M∗ that intertwines the action of V , i.e. satisfies β� ◦ Wn = Wn ◦ β� for every
Wn in V . It is then clear that we can write β as

β(m, n, v) = evM(m, β�(n), v), (3.5)

where m ∈ M,n ∈ N and v ∈ V .
Similarly, if we have an intertwiner g of the chiral algebra mapping the V-representations

M to N, then the three-point blocks evM and evN are related as

evN(g(m), n∗, v) = evM(m, g∗(n∗), v), (3.6)

where g∗ ∈ HomV(N∗,M∗) is the linear map dual to g. Here m ∈ M,n∗ ∈ N∗ and v ∈ V .
Equation (3.6) can be verified by taking the insertion points to 0, 1 and ∞, and noting that g

commutes in particular with the modes of the Virasoro algebra.
We are now in a position to give a good description of the kernel of bev,Nev = ker(bev).

We want to describe it as the span of the images of intertwiners g : Pk ⊗ P̄ ∗
l → Ĥ; this is

always possible since by (I) any V × V̄-representation can be written as a quotient space of
a suitable tensor product which—by passing to projective covers—we may decompose into
a direct sum of tensor products of indecomposable projective representations. The image of
such a map lies in Nev if and only if bev ◦ g = 0. Thus we can write

Nev = ker(bev) = spanC{im(g)|g : Pk ⊗ P̄ ∗
l → Ĥ with bev ◦ g = 0, k, l ∈ Irr}. (3.7)

To characterise the relevant intertwiners g, we denote by Hkl the vector space

Hkl =
⊕
i∈Irr

HomV(Pk, Pi) ⊗ HomV(Pi, Pl), (3.8)

8
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where k, l ∈ Irr and HomV(Pr, Ps) is the space of intertwiners from Pr to Ps . On Hkl we
define two maps as follows. First, we have the composition map ckl : Hkl → HomV(Pk, Pl)

which acts on each component fi ⊗ gi by composition

ckl(fi ⊗ gi) = gi ◦ fi ∈ HomV(Pk, Pl). (3.9)

In addition we have the map dkl : Hkl → HomV×V̄(Pk ⊗ P̄ ∗
l , Ĥ) defined by setting

dkl(fi ⊗ gi) = fi ⊗ ḡ∗
i ∈ HomV×V̄(Pk ⊗ P̄ ∗

l , Ĥ), (3.10)

where g∗
i ∈ HomV(P ∗

l , P ∗
i ) is the dual map to gi ∈ HomV(Pi, Pl) (and the bar indicates again

that g∗
i acts now on the right movers). Note that dkl is an isomorphism of vector spaces, as

follows from (II) above. The key observation is now that (3.6) implies

evPl
([ckl(fi ⊗ gi)](wk), w̄l, v) ≡ evPl

([gi ◦ fi](wk), w̄l, v)

= evPi
(fi(wk), ḡ

∗
i (w̄l), v) ≡ bev([dkl(fi ⊗ gi)](wk ⊗ w̄l), v), (3.11)

where wk ∈ Pk, w̄l ∈ P̄ ∗
l and v ∈ V are arbitrary. It therefore follows that

bev ◦ dkl(F ) = 0 if and only if F ∈ ker(ckl). (3.12)

Since dkl is an isomorphism, every map g in (3.7) can be written as dkl(F ) for an appropriate
F ∈ Hkl . Hence the expression (3.7) for the kernel of bev can be rewritten as

Nev = spanC{im(dkl(F ))|F ∈ ker(ckl), k, l ∈ Irr}. (3.13)

The space of bulk states is then defined as in (3.4). We also denote by bdisc the pairing on
Hbulk ×V induced by bev. It is shown in section 3.5 below that (Hbulk, bdisc) is in fact maximal.

This completes our construction of the bulk space corresponding to the identity brane.
For non-logarithmic rational conformal field theories we have Pi = Ui and one easily verifies
that the linear maps ckl all have trivial kernel. Thus one recovers the space of bulk states of
the charge-conjugation modular invariant theory, Hbulk = ⊕

k∈Irr Uk ⊗ Ū ∗
k . We shall show in

section 4.4 that for the case of the c = −2 triplet theory, the above construction reproduces
the known bulk spectrum [39]. We shall also see that it leads to a very natural bulk spectrum
for the other c1,p triplet models that is in particular modular invariant.

Before turning to the proof that (Hbulk, bdisc) is in fact maximal we want to show that it
defines at least a local theory.

3.4. Locality

Locality of the bulk theory requires that the operator exp(2π i(L0 − L̄0)) acts as the identity
on Hbulk. We want to show now that this is requirement is automatically satisfied by the above
construction.

First, we note that e2π iL0 commutes with all generators of V and that it therefore defines
an intertwiner from any V-representation to itself. Consider now the element

t = e2π iL0 ⊗ id − id ⊗ e2π iL0 ∈ HomV(Pk, Pk) ⊗ HomV(Pk, Pk) ⊂ Hkk. (3.14)

It is obvious that ckk(t) = 0 and hence t lies in the kernel of ckk . It then follows from (3.13)
that the image of Pk ⊗ P̄ ∗

k under e2π iL0 ⊗ īd − id ⊗ e2π iL̄0 lies in Nev, for all k ∈ Irr. In the
quotient space Hbulk we therefore have e2π iL0 = e2π iL̄0 , which yields the desired answer upon
acting on both sides with e−2π iL̄0 .

The above argument implies in particular that the torus partition function for Hbulk is
invariant under τ �→ τ + 1. We do not have a general proof that it is also invariant under
τ �→ −1/τ , but we shall be able to show the full modular invariance for the c1,p triplet theories
(see section 4.5).

9
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3.5. Proof of maximality

We will now prove that the pair (Hbulk, bdisc) has the universal property (3.1). Let (H1, b1) be
any pair such that b1 ∈ B(H1) and b1 is injective. Because of (I) above, there exist projective
representations P and Q, as well as a subrepresentation K of P ⊗Q̄ such thatH1 ∼= (P ⊗Q̄)/K .
Let π1 : P ⊗ Q̄ → H1 be the corresponding projection, and set d = b1 ◦ π1. Since b1 is
injective, we have ker(d) = K .

Next we write P in terms of indecomposable projectives as P = ⊕
i∈Irr niPi and denote

by ι
µ

k : Pk → P,µ = 1, . . . , nk , the embedding of Pk into the µth copy of Pk in P. Similarly,
r

µ

k : P → Pk is the projection onto the µth copy of Pk . Then

r
µ

k ◦ ινl = δk,lδµ,ν idPk
and

∑
k∈Irr

nk∑
µ=1

ι
µ

k ◦ r
µ

k = idP . (3.15)

Let β be the conformal three-point block P × Q × V → C such that d = bβ . According to
(3.5) we can write β(p, q, v) = evP (p, β�(q), v) with β� an intertwiner from Q to P ∗. This
in turn implies that d = bevP

◦ (idP ⊗ β̄�), where (as usual) the bar over β� indicates that it
now acts on the right movers. Thus we can define an intertwiner ϕ̂ : P ⊗ Q̄ → Ĥ (with Ĥ as
given in (3.2)) by

ϕ̂ =
∑
k∈Irr

nk∑
µ=1

(
r

µ

k ⊗ (
ῑ
µ

k

)∗) ◦ (idP ⊗ β̄�). (3.16)

This intertwiner obeys

bev ◦ ϕ̂ =
∑
k,µ

bevPk
◦ (

r
µ

k ⊗ ῑµk∗) ◦ (idP ⊗ β̄�) =
∑
k,µ

bevP
◦ (

idP ⊗ (
r̄

µk∗
k ◦ ῑµk∗)) ◦ (idP ⊗ β̄�)

=
∑
k,µ

bevP
◦ (

idP ⊗ (
ῑ
µ

k ◦ r̄
µ

k

)∗) ◦ (idP ⊗ β̄�) = bevP
◦ (idP ⊗ β̄�) = d, (3.17)

where we used (3.6) and (3.15). Let ϕ be the map from P ⊗ Q̄ to the quotient Hbulk = Ĥ/Nev

induced by ϕ̂, i.e. ϕ = π ◦ ϕ̂, where π : Ĥ → Hbulk is the projection to the quotient. It then
follows that for x ∈ P ⊗ Q̄,

d(x) = 0 ⇒ bev ◦ ϕ̂(x) = 0 ⇒ ϕ̂(x) ∈ ker(bev) ⇒ ϕ(x) = 0. (3.18)

Thus ϕ vanishes on K, and since H1 ∼= (P ⊗Q̄)/K, ϕ can be lifted to a map starting at H1, ϕ
′ :

H1 → Hbulk. For x ∈ P ⊗ Q̄ and [x] the corresponding class in H1 we can write

bdisc ◦ ϕ′([x]) = bdisc ◦ ϕ(x) = bdisc ◦ π ◦ ϕ̂(x) = bev ◦ ϕ̂(x) = d(x) = b1([x]). (3.19)

This shows that ϕ′ is an intertwiner such that (3.1) commutes. As mentioned below (3.1) this
already implies that ϕ′ is unique and injective.

Altogether we have therefore shown that (Hbulk, bdisc) is indeed maximal.

4. The bulk space of the c1, p triplet models

In this section, we want to apply the abstract construction of the previous section to the case
of the c1,p triplet models. We begin by collecting some basic properties of the representation
theory of the c1,p triplet algebra Wp.

10
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4.1. Representations of the Wp-algebra

The representation theory of theWp-algebra [37] has been analysed in [2, 3, 29, 31, 32, 38, 59–
61]. Let us briefly summarise the aspects we will need in the following.

For a given p ∈ Z�2 the central charge of the Wp-algebra is c = 13 − 6p − 6/p. The
Wp-algebra has 2p irreducible representations that we shall label as

Uε
s , s = 1, . . . , p ε = ±. (4.1)

Here U+
1 is the vacuum representation and U−

1 describes the simple current. For p = 2, U−
1 is

the representation V1 of [38] and the irreducible representations U±
2 are V−1/8 and V3/8.

The projective cover of Uε
s is denoted by P ε

s ; for s = p,U±
p = P ±

p , while for
s = 1, . . . , p − 1 we have the maximal inclusions

Uε
s ⊂ Mε

+,s ⊂ Nε
s ⊂ P ε

s and Uε
s ⊂ Mε

−,s ⊂ Nε
s ⊂ P ε

s , (4.2)

where furthermore Uε
s = Mε

+,s ∩ Mε
−,s . Here Mε

±,s , N
ε
s and P ε

s are indecomposable
representations4. The Wp-algebra has an infinite number of distinct indecomposable
representations [31], but only those mentioned above will be needed in our analysis.

For the case of the c = −2 triplet model at p = 2, the two indecomposable representations
R0 and R1 of [38] correspond to P ±

1 . Furthermore, in the symplectic fermion language (we
are using the conventions of [40]), the intermediate representations M±

±,1 and Nε
1 can be easily

described: if we denote the subspace that is generated from χ±
0 ω by the action of the fermionic

modes by M±,1 then M+
±,1 denotes the bosonic states in M±,1, while M−

±,1 are the fermionic
states. Both subspaces form then representations of the (bosonic) triplet algebra. On the other
hand, Nε

1 is the bosonic (ε = +) or fermionic (ε = −) subspace generated by χ+
0 ω and χ−

0 ω

together.

4.2. Intertwiners

For the following it is important to understand the space of intertwiners between two
(indecomposable) projective representations P ε

s and P ν
t . To this end we consider the exact

sequences (see appendix C)

0 → Nε
s → P ε

s → Uε
s → 0, 0 → Mε

ν,s → P ε
s → M−ε

ν,p−s → 0, (4.3)

where s = 1, . . . , p − 1 and ε, ν = ±. Together with (4.2) it follows that HomV
(
P ε

s , P ε
s

)
contains at least two linearly independent maps, namely the identity id, and

n : P ε
s → Uε

s → P ε
s , (4.4)

where the intermediate maps are the surjection of the projective cover and the embedding
Uε

s ⊂ P ε
s . In the symplectic fermion language for p = 2, the intertwiner n is simply

n = χ−
0 χ+

0 .
Similarly, the intertwiners HomV

(
P ε

s , P −ε
p−s

)
contain (we are suppressing the dependence

on s and ε in the definition of eν)

eν : P ε
s → M−ε

ν,p−s → P −ε
p−s ν = ±, (4.5)

where the intermediate maps are those appearing in (4.3). Again for p = 2, we simply have
e± = χ±

0 . It is argued in appendix C that the identity map id, (4.4) and (4.5) already give all
intertwiners,

HomV
(
P ε

s , P ν
t

) =
⎧⎨⎩

Cid ⊕ Cn; t = s, ν = ε

Ce+ ⊕ Ce−; t = p − s, ν = −ε

{0}; otherwise.
(4.6)

4 We follow the conventions used in [32, section 6]. The relation to [29, section 2] is as follows: �(s) = U+
s , �(s) =

U−
s ,R0(s) = P +

s ,R1(s) = P −
p−s , as well as N0(s) = N+

s ,N1(s) = N−
p−s ,N±

0 (s) = M+±,s and N±
1 (s) = M−

±,p−s .

11
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The dimension of the Hom spaces can also be understood from the following diagrams
which describe the sub-quotients of P +

s and P −
p−s :

P+
s :

U+
s

U−
p−s U−

p−s

U+
s

, P−
p−s :

U−
p−s

U+
s U+

s

U−
p−s

. (4.7)

The entries in the first diagram correspond to the inclusions (4.2) in the sense that we have
the equivalences P +

s

/
N+

s
∼= U+

s and N+
s

/
U+

s
∼= U−

p−s ⊕ U−
p−s . The arrows indicate that, e.g. a

representative v of a nonzero [v] ∈ P +
s

/
N+

s (the copy of U+
s at the top of the diagram) can get

mapped to N+
s , but not vice versa.

The exact sequences (4.3) together with the inclusions (4.2) also imply that, for ν = ±,

n ◦ n = 0, eν ◦ n = 0, n ◦ eν = 0, eν ◦ eν = 0. (4.8)

The combination e− ◦ e+ acting on, say, P +
s amounts to the composition

P +
s � M−

+,p−s ↪→ P −
p−s � M+

−,s ↪→ P +
s . (4.9)

The kernel of the second surjection is M−
−,p−s , so that elements of P +

s which get mapped to
elements of M−

+,p−s that do not also lie in M−
−,p−s , have a nonzero image in P +

s . In particular,
e− ◦ e+ �= 0. Since e− ◦ (e− ◦ e+) = 0 we see that e− ◦ e+ is proportional to n. Similarly one
can check that e+ ◦ e− is nonzero and proportional to n. We choose to normalize n such that

e− ◦ e+ = n, e+ ◦ e− = λn for some λ ∈ C
×. (4.10)

For the case of p = 2, it follows from the above identifications that λ = −1. In general
λ may also depend on s and ε.

4.3. The construction of the bulk space

We now want to apply the general construction of section 3 to the case of the c1,p triplet
models. We shall assume that the theory has a boundary condition for which Hbnd = V . This
is motivated by the analysis of [40] where for the p = 2 example the boundary conditions
were analysed in detail (using the symplectic fermion description). For p = 2 we found that
the boundary conditions are labelled by the irreducible representations and that the open string
spectrum is simply determined by the corresponding fusion rules. This led to the conjecture
that the same structure is also present for the other c1,p triplet models. If this is the case, then
the brane associated with the irreducible vacuum representation has indeed Hbnd = V .

We shall thus assume that such a brane exists and determine the corresponding bulk
spectrum following the strategy of section 3. As a consistency check we shall later study
the boundary states of the resulting bulk theory (see section 5). We shall find that our bulk
theory has indeed boundary states associated with the irreducible representations of the triplet
algebra, and that their open string spectra are determined by the fusion rules. This therefore
forms a stringent consistency check on our procedure.

With this in mind, all we have to do is to calculate the kernel Nev of the map bev. Recall
from section 3.3 the definition of the spaces Hkl , as well as the maps ckl and dkl . It follows
from (4.6) that the spaces Hkl are only nonzero for (k, l) = ((s, ε), (s, ε)) with s = 1, . . . , p

and (k, l) = ((s, ε), (p − s,−ε)) for s = 1, . . . , p − 1, where in both cases ε = ±. It is
therefore enough to consider the kernel of bev separately for the spaces

Ĥs = (
P +

s ⊗ P̄ +∗
s

) ⊕ (
P −

p−s ⊗ P̄ −∗
p−s

)
, (4.11)
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where s = 1, . . . , p − 1. (Since P ±
p is already irreducible, the kernel in the summands with

s = p is trivial.) The spaces Hkl are of the form H + := H(s,ε)(s,ε) and H− := H(s,ε)(p−s,−ε),
where

H + = HomV
(
P ε

s , P ε
s

) ⊗ HomV
(
P ε

s , P ε
s

) ⊕ HomV
(
P ε

s , P −ε
p−s

) ⊗ HomV
(
P −ε

p−s , P
ε
s

)
,

H− = HomV
(
P ε

s , P ε
s

) ⊗ HomV
(
P ε

s , P −ε
p−s

) ⊕ HomV
(
P ε

s , P −ε
p−s

) ⊗ HomV
(
P −ε

p−s , P
−ε
p−s

)
.

(4.12)

An element u of H + is a linear combination of the form

u = a(id ⊗ id) + b(n ⊗ id) + c(id ⊗ n) + d(n ⊗ n) +
∑

µ,ν=±
f µν(eµ ⊗ eν). (4.13)

Applying c+ := c(s,ε)(s,ε) to u yields c+(u) = a id + (b + c + f +− + λf −+)n. The kernel of c+

is thus given by

ker(c+) = spanC{(n ⊗ n), (e+ ⊗ e+), (e− ⊗ e−), (n ⊗ id − id ⊗ n),

(λe+ ⊗ e− − e− ⊗ e+), (n ⊗ id − e+ ⊗ e−)}. (4.14)

Similarly, an element v of H− is a linear combination of the form

v =
∑
ν=±

(aν(id ⊗ eν) + bν(eν ⊗ id) + cν(n ⊗ eν) + dν(eν ⊗ n)). (4.15)

Applying c− := c(s,ε)(p−s,−ε) to v gives c−(v) = ∑
ν(a

ν + bν)eν , so that

ker(c−) = spanC{(n ⊗ eν), (eν ⊗ n), (id ⊗ eν − eν ⊗ id)|ν = ±}. (4.16)

Using (3.13) the kernel Nev of bev is now simply d±(f ) for the various generators f of ker(c±).
This specifies the kernel Nev completely. However, we do not need to consider the image

of all of these maps separately. In fact, the kernel is already generated by the images of the
last element of ker(c−) with ν = ±. More precisely, we define the space

Ds = (
P +

s ⊗ P̄ −∗
p−s

) ⊕ (
P −

p−s ⊗ P̄ +∗
s

)
. (4.17)

Then

Kν
s = (id ⊗ ē∗

ν − eν ⊗ īd)Ds , ν = ± (4.18)

are subspaces of Ĥs . (Recall that eν maps P +
s to P −

p−s and vice versa, and it is understood
that (id ⊗ ē∗

ν − eν ⊗ īd) acts on both summands of Ds .) We now claim that the kernel of bev

restricted to Ĥs is simply the span of these two spaces,

Ns = ker
(
bev|Ĥs

) = spanC

(
K+

s ,K−
s

)
. (4.19)

By construction, it is clear that K±
s ⊂ Ns ; it only remains to prove that they generate already

all of Ns , i.e. that the images of d±(f ) for the various generators f of ker(c±) lie in a linear
combination of states from K±

s . Let us check this explicitly in two examples; the rest can be
seen similarly. To obtain the first generator of ker(c+) in (4.14) we consider the composition

(id ⊗ ē∗
+ − e+ ⊗ īd) ◦ (n ⊗ ē∗

−) = n ⊗ (ē∗
+ ◦ ē∗

−) − (e+ ◦ n) ⊗ ē∗
− = n ⊗ (ē− ◦ ē+)

∗ = n ⊗ n̄∗.
(4.20)

Similarly, the forth generator in (4.14) is obtained by taking

−(id ⊗ ē∗
+ − e+ ⊗ īd) ◦ (id ⊗ ē∗

−) − (id ⊗ ē∗
− − e− ⊗ īd) ◦ (e+ ⊗ īd)

= −id ⊗ (ē∗
+ ◦ ē∗

−) + e+ ⊗ ē∗
− − e+ ⊗ ē∗

− + (e− ◦ e+) ⊗ īd = − id ⊗ n̄∗ + n ⊗ īd.
(4.21)
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4.4. The bulk space and comparison to p = 2

Summarizing the above discussion we therefore find that the actual bulk space of states Hbulk

is of the form

Hbulk =
p−1⊕
s=1

Ĥs/Ns ⊕ (
U+

p ⊗ Ū+∗
p

) ⊕ (
U−

p ⊗ Ū−∗
p

)
, (4.22)

where Ns is defined in (4.19). For p = 2 equation (4.22) becomes in the notation of [40]

Hbulk = Hbos
ω

/
N ⊕ (V−1/8 ⊗ V̄−1/8) ⊕ (V3/8 ⊗ V̄3/8), (4.23)

where Hbos
ω = (R0 ⊗ R̄0)⊕ (R1 ⊗ R̄1). Furthermore, it follows from (4.19) together with the

identification of e± = χ±
0 that N consists of the states

N = spanC

{(
χν

0 − χ̄ ν
0

)
ψ

∣∣ν = ±, ψ ∈ Hfer
ω

}
, (4.24)

where Hfer
ω = (R0 ⊗ R̄1) ⊕ (R1 ⊗ R̄0). This then reproduces precisely the description of the

bulk theory used in [40].
In [24] harmonic analysis on supergroups was used to obtain the space of bulk states for

WZW models with supergroup targets. The similarities in the representation theory of super
Lie algebras and the Wp-algebra were then exploited to propose a description of the bulk space
as

Hbulk =
p−1⊕
s=1

Is ⊕ (
U+

p ⊗ Ū+∗
p

) ⊕ (
U−

p ⊗ Ū−∗
p

)
, (4.25)

and a composition series for Is was given. (However, unlike the expression (4.22) in terms of
quotients, a composition series does in general not fix a representation up to isomorphism.) In
[24] it is also conjectured that as a W̄p-representation (but not as a Wp × W̄p-representation)
Is is of the form

Is = (
U+

s ⊗ P̄ +∗
s

) ⊕ (
U−

p−s ⊗ P̄ −∗
p−s

)
. (4.26)

In order to compare this prediction with our result we now have to decompose our quotient
space Hs ≡ Ĥs/Ns with respect to the W̄p action. This is done in appendix D and we find
agreement with (4.26). It is encouraging that the two proposals fit together.

4.5. Modular invariance for the c1,p triplet models

Finally, we want to show that the partition function of the bulk spaceHbulk is modular invariant.
We have already proven in section 3.2 that the partition function is invariant under τ �→ τ + 1.
This followed from the fact that exp(2π i(L0 − L̄0)) acts as the identity on Hbulk. In the present
context this can be seen more concretely because the element n ⊗ id − id ⊗ n is in ker(c+),
see equation (4.14), and since e2π iL0 ∈ HomV

(
P ε

s , P ε
s

)
can be written as a linear combination

of id and n.
With the help of equation (4.26) it is now straightforward to compute the partition function

of Hbulk in (4.22). We will start by recalling the expressions for the characters of the Wp-
representations and their modular properties. These were first described in [2]; here we will
follow the presentation in [29, section 3]. The characters of the irreducible representations
are, for s = 1, . . . , p and ν = ±,

χU+
s
(τ ) = 1

η(q)

(
s

p
θp−s,p(q) + 2θ ′

p−s,p(q)

)
, χU−

s
(τ ) = 1

η(q)

(
s

p
θs,p(q) − 2θ ′

s,p(q)

)
.

(4.27)
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Here η(q) is the Dedekind eta function and θs,p(q) = θs,p(1, q) with

η(q) = q
1

24

∞∏
n=1

(1 − qn), θs,p(z, q) =
∑

m∈Z+
s

2p

zmqpm2
. (4.28)

We also define

θ ′
s,p(q) = z

∂

∂z
θs,p(z, q)

∣∣∣∣
z=1

. (4.29)

Both θs,p and θ ′
s,p are periodic in s with period 2p. In addition we have θs,p(q) =

θ2p−s,p(q) and θ ′
s,p(q) = −θ ′

2p−s,p(q). Thus we can restrict s to take the values s = 0, . . . , p.
Furthermore it follows that θ ′

0,p(q) = 0 = θ ′
p,p(q). The modular transformation properties

under τ �→ −1/τ are

θs,p

η

(
− 1

τ

)
= 1√

2p

2p−1∑
s ′=0

eiπss ′/p θs ′,p

η
(τ )

= 1√
2p

[
θ0,p

η
(τ ) + (−1)s

θp,p

η
(τ ) + 2

p−1∑
s ′=1

cos

(
πss ′

p

)
θs ′,p

η
(τ )

]
, (4.30)

and similarly

θ ′
s,p

η

(
− 1

τ

)
= − τ√

2p

2p−1∑
s ′=0

eiπss ′/p θ ′
s ′,p

η
(τ ) = − 2iτ√

2p

p−1∑
s ′=1

sin

(
πss ′

p

)
θ ′
s ′,p

η
(τ ). (4.31)

For the following it is also useful to abbreviate, for s = 1, . . . , p − 1,

ψ+
s (τ ) = χU+

s
(τ ) + χU−

p−s
(τ ) = θp−s,p(q)

η(q)
, ψ−

s (τ ) = χU−
s
(τ ) + χU+

p−s
(τ ) = θs,p(q)

η(q)
.

(4.32)

It then follows from the exact sequences in section 4.2 that trP ±
s

(
qL0−c/24

) = 2ψ±
s (τ ) for

s = 1, . . . , p − 1. Equation (4.26) now implies that

trHs
(qL0−c/24(q∗)L̄0−c/24) = 2χU+

s
(τ )ψ+

s (τ ) + 2χU−
p−s

(τ )ψ−
p−s(τ ) = 2

∣∣ψ+
s (τ )

∣∣2
, (4.33)

where we have used that ψ−
p−s = ψ+

s . Taking the trace of Hbulk and using the previously
mentioned relations between the different θs,p functions then gives

Z(τ) = trHbulk(q
L0−c/24(q∗)L̄0−c/24)

= ∣∣χU+
p
(τ )

∣∣2
+

∣∣χU−
p
(τ )

∣∣2
+ 2

p−1∑
s=1

∣∣ψ+
s (τ )

∣∣2 = 1

|η(τ)|2
2p−1∑
s=0

|θs,p(q)|2. (4.34)

As already noted in [2] (see also [24]), the last expression for Z(τ) is easily checked to obey
Z(−1/τ) = Z(τ) using the modular properties of the theta functions.

5. Boundary states

Now that we have the bulk spectrum under control we can analyse the possible Ishibashi states
and construct the boundary states. This will be a consistency check of our approach since
we started out by assuming that the theory possesses an ‘identity brane’ whose open string
spectrum only consists of the chiral algebra itself.
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5.1. The space of Ishibashi states

Boundary conditions are usually described in terms of boundary states that live in a suitable
completion of Hbulk. Instead of giving the boundary state explicitly, we may also specify it by
giving all bulk one-point functions on the disc (or on the upper half plane). Thus we may think
of a boundary condition as being described by a linear form Hbulk → C. For concreteness,
we take this linear form to be defined by inserting the bulk field on the upper half plane at the
point z = i.

Every boundary condition that preserves the symmetry described byV necessarily contains
V as a subspace of Hbnd, and we may as well consider the correlator of a bulk field inserted
at z = i, together with a boundary field in the subspace V inserted at 0. Thus we are led to
consider a bilinear map Hbulk ×V → C. The compatibility conditions with the action of V for
such a bilinear map are just the same as for bdisc. After all, bdisc is precisely such a correlator
for the identity brane. The space of bilinear maps Hbulk × V → C compatible with the action
of V is by definition the space of Ishibashi states, and we therefore obtain5

B(Hbulk) is the space of Ishibashi states for Hbulk. (5.1)

Here Hbulk is the quotient (3.4) and B(Hbulk) is defined as in section 3.1 and appendix A.
Since Hbulk is defined as the quotient Ĥ/Nev, B(Hbulk) is isomorphic to the space of linear

forms on Ĥ that lie in B(Ĥ) and that vanish on Nev,

B(Hbulk) ∼= {b ∈ B(Ĥ)|b(v) = 0 for all v ∈ Nev}. (5.2)

Because of (3.5) and (3.6) every element b ∈ B(Ĥ) can be written as

b(p ⊗ q̄, v) =
∑
k∈Irr

evPk
(ρk(p), q, v) (5.3)

for an appropriate ρk ∈ HomV(Pk, Pk). In fact, this defines an isomorphism⊕
k∈Irr

HomV(Pk, Pk)
∼=−→ B(Ĥ). (5.4)

By the same arguments used to obtain the description of Nev in (3.13), it is not hard to see that
b vanishes on Nev if and only if

∑
i gi ◦ ρi ◦ fi = 0 whenever

∑
i gi ◦ fi = 0, i.e. whenever∑

i gi ⊗ fi lies in the kernel of ckl as defined in (3.9). But let us see more concretely what the
result is for the c1,p triplet models.

For the case of the c1,p triplet models, we can consider the various summands of Hbulk

in (4.22) separately. The two irreducible summands corresponding to P ±
p give rise to two

Ishibashi states corresponding to ρ = idP +
p

and ρ = idP −
p

, respectively. (These are the familiar
Ishibashi states associated with irreducible representations.) The situation is more interesting
for Hs = Ĥs/Ns with s = 1, . . . , p − 1. The space of intertwiners

(ρ+, ρ−) ∈ HomV
(
P +

s , P +
s

) ⊕ HomV
(
P −

p−s , P
−
p−s

)
(5.5)

is four dimensional, but we also have to impose the condition that (ρ+, ρ−) vanishes on Ns .
Since Ns is generated by K±

s , we thus need to analyse whether (ρ+, ρ−) vanishes on K±
s .

Using (3.6) this leads to the condition

eν ◦ ρ+ − ρ− ◦ eν = 0 ∈ HomV
(
P +

s , P −
p−s

)
and

eν ◦ ρ− − ρ+ ◦ eν = 0 ∈ HomV
(
P −

p−s , P
+
s

)
,

(5.6)

5 The term Ishibashi state is more commonly used for a state in Hbulk and appears in the description of boundaries
without insertions of V . The two descriptions are equivalent. For example, given a b ∈ B(Hbulk), the corresponding
element φ ∈ Hbulk is determined by b(φ′, �) = 〈φ(−i)φ′(i)〉 for all φ′ ∈ Hbulk. Here the right-hand side is the bulk
two-point function on the complex plane and � ∈ V is the vacuum vector of the vertex algebra. (To obtain boundary
states for the disc, rather than the upper half plane, one should employ an appropriate conformal transformation.)
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where ν = ±. A short calculation using (4.8) shows that the space of solutions is three
dimensional and is given by

ρ+ = α id + βn, ρ− = α id + γ n, (5.7)

where α, β, γ ∈ C. (In the first equation id and n act on P +
s , while in the second they act

on P −
p−s .) Altogether we therefore obtain 3(p − 1) Ishibashi states from the indecomposable

sectors Hs , as well as two Ishibashi states from the irreducible representations, giving in total
3p − 1 Ishibashi states. Obviously this agrees with the explicit analysis for p = 2 in [40]. It
also agrees with the number of chiral torus amplitudes [62], as may have been expected.

As in the case for p = 2 we do not expect that all of these Ishibashi states will contribute
to the boundary states. Indeed, the space of torus amplitudes contains only 2p functions that
are power series in q, while the remaining p − 1 torus functions involve terms proportional
to τ [62] (see also [2]). The latter cannot appear in a consistent open string expansion (since
the open string description involves a trace that can never lead to a term proportional to τ ),
and thus the space of open string amplitudes is only 2p dimensional. But then it follows that
only a 2p-dimensional subspace of the Ishibashi states can contribute to consistent boundary
states. In fact, one would expect that for each Hs only two linear combinations of the three
Ishibashi states can contribute. This expectation is borne out by the detailed construction to
which we now turn.

5.2. Constructing the boundary states

The analysis of [40] suggests that the boundary states of the ‘charge-conjugation’ c1,p triplet
models are labelled by the irreducible representations of theWp-algebra. As we have explained
before, the irreducible representations are labelled by (s, ε), where s = 1, . . . , p and ε = ±;
we shall denote the corresponding boundary states as ||(s, ε)〉〉. Given the results of [40] it is
furthermore natural to expect that their open string spectrum is described by the fusion rules,
i.e. that

〈〈(s1, ε1)||q 1
2 (L0+L̄0)− c

24 ||(s2, ε2)〉〉 =
∑
R

N fus
(s1,ε1)(s2,ε2)

R trR(q̃L0−c/24), (5.8)

where as always in the following q = e2π iτ and q̃ = e−2π i/τ . Here N fus
(s1,ε1)(s2,ε2)

R gives the
decomposition of the fusion product of two irreducible representations,

Uε1
s1

� Uε2
s2

=
⊕
R

N fus
(s1,ε1)(s2,ε2)

RR, (5.9)

for more details see appendix C. The ansatz (5.8) is the natural generalization of the usual
Cardy situation [56] to rational logarithmic conformal field theories.

On the level of characters one cannot tell the difference between P ν
s and 2Uν

s ⊕2U−ν
p−s , so

that we may as well write (5.8) directly in terms of the structure constants N of the Grothendieck
ring, also given in appendix C,

〈〈(s1, ε1)||q 1
2 (L0+L̄0)− c

24 ||(s2, ε2)〉〉 =
p∑

r=1

∑
µ=±

N
(r,µ)

(s1,ε1)(s2,ε2)
χU

µ
r
(q̃). (5.10)

Starting from the ansatz (5.10) we now want to construct the boundary states explicitly.
To this end, we will evaluate (5.10) in the special case (s1, ε1) = (1, +) and (s2, ε2) arbitrary,
as well as for (s1, ε1) = (s2, ε2) = (p, +). This will determine the boundary states ||(s, ε)〉〉
and the overlap of the Ishibashi states. It is then a highly non-trivial consistency check that all
other overlaps also agree with (5.10).
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To carry out this calculation it is convenient to work with the S-matrices of the Wp-
characters. These can be found from the transformation properties of the theta-functions in
section 4.5 or by rearranging [29, prop. 3.4],

χUε
s
(q̃) =

p∑
t=1

∑
ν=±

(
S(s,ε),(t,ν) − iτS�

(s,ε),(t,ν)

)
χUν

t
(q). (5.11)

Here q̃ = e−2π i/τ is the open string loop parameter, while q = e2π iτ is the corresponding
parameter in the closed string. The matrices S and S� are, for s, t = 1, . . . , p and ε, ν = ±,

S(s,ε),(t,ν) = 2 − δt,p√
2p

s

p
cos

(
π

st

p

)
(−ν)s(−ε)t (−1)p(ε+1)(ν+1)/4,

S�
(s,ε),(t,ν) = 2√

2p

p − t

p
sin

(
π

st

p

)
(−ν)s(−ε)t (−1)p(ε+1)(ν+1)/4.

(5.12)

Note that S�
(s,ε),(p,ν) = 0 and that for t = 1, . . . , p − 1 these S-matrices have the symmetries

S(s,ε),(p−t,−ν) = S(s,ε),(t,ν), (p − t)S�
(s,ε),(p−t,−ν) = −tS�

(s,ε),(t,ν). (5.13)

With the help of these identities we can rewrite (5.11) in the following form:

χUε
s
(q̃) =

∑
ν=±

S(s,ε),(p,ν)χUν
p
(q) +

p−1∑
t=1

(
S(s,ε),(t,+)ψ

+
t (q) + S�

(s,ε),(t,+)ϕ
+
t (q)

)
, (5.14)

where ψ+
s (q) was defined in (4.32) and ϕ+

s (q) is given by

ϕ+
s (q) = −iτ

2p

p − s

(
p − s

2p
χU+

s
(q) − s

2p
χU−

p−s
(q)

)
= −iτ

2p

p − s

θ ′
p−s,p(q)

η(q)
. (5.15)

To determine the boundary states we begin by considering the overlap of the brane
associated with the vacuum representation (1, +) with itself. Since the fusion of the vacuum
with the vacuum is just the vacuum we have

〈〈(1, +)||q 1
2 (L0+L̄0)− c

24 ||(1, +)〉〉 = χU+
1
(q̃)

=
∑
ν=±

S(1,+),(p,ν)χUν
p
(q) +

p−1∑
t=1

(
S(1,+),(t,+)ψ

+
t (q) + S�

(1,+),(t,+)ϕ
+
t (q)

)
. (5.16)

The terms from the first sum of the last line come from the Ishibashi states in the sectors U±
p ,

while the contributions with t = 1, . . . , p − 1 come from Ishibashi states in Ht . The former
Ishibashi states

∣∣U±
p

〉〉
are unique up to normalization, and we choose〈〈

Uν
p

∣∣q 1
2 (L0+L̄0)− c

24
∣∣Uν

p

〉〉 = S(1,+),(p,ν)χUν
p
(q), (5.17)

where the additional factor avoids the introduction of square roots later on. As regards the
Ishibashi states coming from Ht , the analysis in section 5.1 showed that there are a priori
three independent such Ishibashi states, but it will turn out that we will need only two. Given
the validity of (5.16) there has to exist an Ishibashi state |Pt 〉〉 in Ht such that

〈〈Pt |q 1
2 (L0+L̄0)− c

24 |Pt 〉〉 = S(1,+),(t,+)ψ
+
t (q) + S�

(1,+),(t,+)ϕ
+
t (q). (5.18)

Then the boundary state corresponding to the vacuum brane (1, +) is simply

||(1, +)〉〉 = ∣∣U+
p

〉〉
+

∣∣U−
p

〉〉
+

p−1∑
t=1

|Pt 〉〉. (5.19)
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For the general boundary state ||(s, ε)〉〉 we now make the ansatz

||(s, ε)〉〉 = B+
(s,ε)

∣∣U+
p

〉〉
+ B−

(s,ε)

∣∣U−
p

〉〉
+

p−1∑
t=1

(
Bt

(s,ε)|Pt 〉〉 + B̃t
(s,ε)|Ut 〉〉

)
, (5.20)

where |Ut 〉〉 is a second Ishibashi state in Ht whose overlap with |Pt 〉〉 will be determined
shortly. By our ansatz (5.10) we must have

〈〈(1, +)||q 1
2 (L0+L̄0)− c

24 ||(s, ε)〉〉 = χUε
s
(q̃)

=
∑
ν=±

S(s,ε),(p,ν)χUν
p
(q) +

p−1∑
t=1

(
S(s,ε),(t,+)ψ

+
t (q) + S�

(s,ε),(t,+)ϕ
+
t (q)

)
. (5.21)

This shows that the overlap of |Ut 〉〉 and |Pt 〉〉 has to be a linear combination of ψ+
t (q) and

ϕ+
t (q). For t = 1, . . . , p−1 we have S�

(1,+),(t,+) �= 0 so that the second term in (5.18) is always
nonzero6. Thus by redefining |Ut 〉〉 �→ |Ut 〉〉 + λ|Pt 〉〉 if necessary, and by rescaling |Ut 〉〉, we
can achieve that

〈〈Pt |q 1
2 (L0+L̄0)− c

24 |Ut 〉〉 = ψ+
t (q). (5.22)

Comparing (5.20) and (5.21) now results in the conditions S(1,+),(p,ν)B
ν
(s,ε) = S(s,ε),(p,ν)

as well as

S�
(1,+),(t,+)B

t
(s,ε) = S�

(s,ε),(t,+), S(1,+),(t,+)B
t
(s,ε) + B̃t

(s,ε) = S(s,ε),(t,+). (5.23)

The general boundary state is therefore given by

||(s, ε)〉〉 =
∑
ν=±

S(s,ε),(p,ν)

S(1,+),(p,ν)

∣∣Uν
p

〉〉
+

p−1∑
t=1

S�
(s,ε),(t,+)

S�
(1,+),(t,+)

|Pt 〉〉

+
p−1∑
t=1

(
S(s,ε),(t,+) − S(1,+),(t,+)

S�
(s,ε),(t,+)

S�
(1,+),(t,+)

)
|Ut 〉〉. (5.24)

Before we can verify that this indeed reproduces (5.10) we have to compute the self-overlap
of |Ut 〉〉. Let us set 〈〈Ut |q 1

2 (L0+L̄0)− c
24 |Ut 〉〉 = ht (q). Then from (5.24) and (5.12) it follows that

〈〈(p, +)||q 1
2 (L0+L̄0)− c

24 ||(p, +)〉〉 =
√

2/p
(
χU+

p
(q) − (−1)pχU−

p
(q)

)
+

p−1∑
t=1

2
p
ht (q)

=
p−1∑
t=1

2
p
ht (q) +

⎧⎨⎩2
∑p−1

r=1;2
(
χU+

r
(q̃) + χU−

p−r
(q̃)

)
if p even,

χU+
p
(q̃) + 2

∑p−2
r=1;2

(
χU+

r
(q̃) + χU−

p−r
(q̃)

)
if p odd,

(5.25)

where the ‘;2’ in the sum means that the sum is taken in steps of two. This should be equal to
(5.10) for (s1, ε1) = (s2, ε2) = (p, +). Note that the fusion of U+

p with itself is

U+
p � U+

p =
{

P +
1 ⊕ P +

3 ⊕ · · · ⊕ P +
p−1 if p even

P +
1 ⊕ P +

3 ⊕ · · · ⊕ P +
p−2 ⊕ U+

p if p odd
(5.26)

(see appendix C). Comparing the character of this and (5.25) fixes ht (q) = 0, so that

〈〈Ut |q 1
2 (L0+L̄0)− c

24 |Ut 〉〉 = 0. (5.27)

6 Note that, on the other hand, S(1,+),(p/2,+) = 0 for p even.
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Now that the overlaps of the Ishibashi states and the boundary states are fixed we can perform
the consistency check of our ansatz by substituting (5.24) into (5.10). This results in the
expression

N
(r,µ)

(s1,ε1)(s2,ε2)
=

∑
ν=±

S(s1,ε1),(p,ν)S(s2,ε2),(p,ν)S(p,ν),(r,µ)

S(1,+),(p,ν)

+
p−1∑
t=1

∑
ν=±

(
S(s1,ε1),(t,ν)S

�
(s2,ε2),(t,ν) + S�

(s1,ε1),(t,ν)S(s2,ε2),(t,ν)

S�
(1,+),(t,ν)

− S�
(s1,ε1),(t,ν)S

�
(s2,ε2),(t,ν)

(
iτ + S(1,+),(t,ν)/S

�
(1,+),(t,ν)

)
S�

(1,+),(t,ν)

)

×
(

S(t,ν),(r,µ) − i

(−1

τ

)
S�

(t,ν),(r,µ)

)
. (5.28)

In particular, the τ -dependence on the right-hand side has to cancel. We have verified
numerically in a large number of examples that the right-hand side of (5.28) indeed reproduces
the structure constants of the Grothendieck ring as determined by (C.3).

While equation (5.28) still looks quite complicated, it can be simplified considerably
in the following way. For t = 1, . . . , p − 1 consider the S(s,ε),(t,ν) and S�

(s,ε),(t,ν) as formal
variables and introduce a derivation D on these by setting D[S�] = S and D[S] = 0, i.e.

D
[
f

(
S�

(s,ε),(t,ν)

)] = f ′(S�
(s,ε),(t,ν)

)
S(s,ε),(t,ν), D[f (S(s,ε),(t,ν))] = 0. (5.29)

Then one can, e.g., write (5.11) as

χUε
s
(q̃) =

∑
ν=±

S(s,ε),(p,ν)χUν
p
(q) +

p−1∑
t=1

∑
ν=±

(D − iτ id)
[
S�

(s,ε),(t,ν)

] · χUν
t
(q). (5.30)

Equation (5.28) can then be written more compactly as

N
(r,µ)

(s1,ε1)(s2,ε2)
=

∑
ν=±

S(s1,ε1),(p,ν)S(s2,ε2),(p,ν)S(p,ν),(r,µ)

S(1,+),(p,ν)

+
p−1∑
t=1

∑
ν=±

(D − iτ id)

[
S�

(s1,ε1),(t,ν)S
�
(s2,ε2),(t,ν)

S�
(1,+),(t,ν)

]
·
(

D − i

(−1

τ

)
id

) [
S�

(t,ν),(r,µ)

]
, (5.31)

where the τ -dependent terms on the right-hand side cancel. This formula can be understood
as a logarithmic version of the Verlinde formula [63], which describes the structure constants
of the Grothendieck ring in non-logarithmic rational conformal field theories (of course, for
these the Grothendieck ring coincides with the fusion rules of the irreducible representations).
Verlinde-like formulae for Wp-representations have also been studied in [2, 29, 65].

As opposed to the procedure in [29] resting on block diagonalizing the fusion rules7,
the formula (5.31) does not involve any choices; the matrices S and S� are uniquely fixed by
(5.11). Furthermore, in the given form it is quite suggestive how to generalize (5.31): the
sum runs over all irreducible representations and each summand in (5.31) looks as in the usual
Verlinde formula, but with additional D-operators inserted, where the number of insertions
is related to the size of the Jordan cell of L0 in the corresponding projective cover. (For the
Wp-representations these Jordan cells are all of length one or two.)

7 The matrix S appearing in the block diagonalization is related to S and S� via S = S + S� (see [29], equations (3.3),
(4.12) and (5.17)).
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6. Conclusion and outlook

In this paper, we have proposed a simple method to compute the space of bulk fields for a
logarithmic rational conformal field theory. The construction starts from the assumption that
there is a boundary condition whose space of boundary fields consists only of the chiral algebra
V itself. The space of bulk fields is then the largest space that can be coupled to the space of
boundary fields in a non-degenerate way, consistent with the action of V . When applied to non-
logarithmic rational conformal field theories, this construction yields the charge-conjugation
modular invariant theory.

We verified that our method gives a modular invariant partition function when applied to
the c1,p triplet models. As a consistency check of the ansatz we computed the set of boundary
states—one for each irreducible representation of the Wp-algebra—and checked that their
overlaps give consistent amplitudes in the open channel. We also confirmed that there is
indeed a boundary condition whose space of boundary fields is given by V . The analysis of
the boundary states finally led to a Verlinde-like formula for the structure constants of the
Grothendieck ring of the Wp-representations. We also conjectured a formula for the fusion
rules of these representations.

There are a number of questions that deserve further study:

(i) While we were able to show that the partition function is invariant under the T-modular
transformation, Z(τ) = Z(τ + 1), it remains to prove in general that it is also invariant
under the S-transformation, Z(τ) = Z(−1/τ).

(ii) The ansatz for the spaces of boundary fields given in (5.8) does determine the character
of the corresponding Wp-representation, but not the representation itself. On the
other hand, the tensor product (C.4) of irreducible representations provides a natural
conjecture for the Wp action on the spaces of boundary fields. For p = 2 this has been
verified to some extent in [40], and it would be good to check that this remains true
for all p.

(iii) To have a consistent conformal field theory one also has to find a set of structure constants
that satisfy the sewing constraints. For non-logarithmic rational theories such a set
of structure constants is uniquely determined by the boundary theory [48, 50], and it
would be interesting to understand to which extent this remains true for logarithmic
models.

(iv) As already noted in [24, section 6.2], the result (4.22) for the space of bulk states bears
a remarkable resemblance to the decomposition of the regular representation of Ūqs�(2)

(see [64, prop. 4.4.2]). Understanding this relation better might help to formulate the
construction presented in this paper on a purely categorical level without explicit mention
of the action of V .

(v) The analysis of WZW models with supergroup targets in [21–24] uses quite a different
starting point to obtain the bulk space as compared to our construction, namely harmonic
analysis on supergroups. It would be interesting to evaluate our quotient expression
for Hbulk (3.4) for these supergroup models, and see if the result agrees with their
findings.

(vi) It would be good to understand the precise relation between [2, 29, 65] and our formula
(5.31), in particular since we recover the structure constants of the Grothendieck ring
determined in [29]. Also, it would be very interesting to see if (5.31), with the
modifications suggested there, determines the Grothendieck ring of other logarithmic
conformal field theories as well.

We hope to return to some of these points in the near future.
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Appendix A. Compatibility of b with the V-action

In this appendix, we describe the invariance condition that defines the space B(Ĥ) for a given
V×V̄-representation Ĥ. This condition comes directly from the definition of conformal blocks
as co-invariants with respect to an action of the conformal vertex algebra (see [66]).

Let W be a quasi-primary element of V of conformal weight hW . Let F(hW ) be the
space of functions that are meromorphic on C, holomorphic on C − {i, 0,−i}, and behave
as (const)z2hW −2 at infinity. Given an element f ∈ F(hW ) and a point x ∈ C we define the
formal sum of modes of W

W [f, x] =
∑
m∈Z

am+hW −1Wm, where f (x + ζ ) =
∑
m∈Z

amζm. (A.1)

With this definition W [zm+hW −1, 0] = Wm, and zm+hW −1 ∈ F(hW ) for m � hW − 1, i.e.
precisely when 〈0|Wm = 0. For the same reason, 〈0|W [f, 0] = 0 for all f ∈ F(hW ). The
invariance condition for the conformal three-point blocks β with insertions of M,N,V at
i,−i, 0, respectively, is then obtained by inserting the contour integral

∮
f (z)W(z) dz around

infinity and deforming the contour. One obtains

β(W [f, i]p, q, v) + β(p,W [f,−i]q, v) + β(p, q,W [f, 0]v) = 0, (A.2)

where W ∈ V is quasiprimary, and f ∈ F(hW ), p ∈ M,q ∈ N and v ∈ V are arbitrary.
This translates into the following definition for B(Ĥ): given a V × V̄-representation Ĥ,

the space B(Ĥ) consists of all bilinear maps b : Ĥ × V → C with the property that for all
u ∈ Ĥ, v ∈ V , and for all quasi-primary W ∈ V and all f ∈ F(hW ),

b(W [f, i]u, v) + b(W̄ [f,−i]u, v) + b(u,W [f, 0]v) = 0. (A.3)

Here, by W̄ [f, x] we mean the formal sum
∑

m∈Z
am+hW −1W̄m, where the coefficients am are

defined as in (A.1).

Appendix B. The kernel of b is a V × V̄-representation

Given a V × V̄-representation Û together with a pairing b ∈ B(Û) we will prove that the
kernel of b : Û → V∗ is a V × V̄-subrepresentation of Û . This statement is implied by the
following lemma.

Lemma. Let W ∈ V be quasi-primary and let u ∈ Û be such that b(u, v) = 0 for all v ∈ V .
Then also b(Wmu, v) = 0 = b(W̄mu, v) for all v ∈ V and m ∈ Z.

Proof. We will prove the assertion by induction on the mode number m. By definition of a
V × V̄-representation, for every vector u there is an integer M(u) such that Wmu = 0 = W̄mu
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for all m � M(u). To start the induction we note that b(Wmu, v) = 0 = b(W̄mu, v) for all
v ∈ V and m � M(u). Suppose now we have proved the statement for all m > m0. Consider
the function

f (z) = (z − i)m0+hW −1((z + i)/(2i))M(u)+hW −1(z/i)−m0−M(u) ∈ F(hW ). (B.1)

Then W [f, i] = Wm0 + ( higher), where ( higher) stands for terms with mode number greater
than m0. Furthermore we have W [f,−i] = ( const)·WM(u) +( higher) so that W̄ [f,−i]u = 0.
We compute

b
(
Wm0u, v

) (1)= b(W [f, i]u, v) − b(( higher)u, v)
(2)= b(W [f, i]u, v)

(3)= −b(W̄ [f,−i]u, v) − b(u,W [f, 0]v)
(4)= 0. (B.2)

In step 2 we employed the induction assumption to set the second term to zero, step 3 uses
the definition of B(Û), and in step 4 the first term vanishes because W̄ [f,−i]u = 0 and the
second term is of the form b(u, v′) for some v′ ∈ V , which is zero by assumption. Similarly
one can show that b

(
W̄m0u, v

) = 0 for all v. �

Appendix C. Fusion rules for Wp-representations

The product of irreducible representations in the Grothendieck ring has been conjectured in
[29]. In this appendix, we extend this conjecture to the fusion product � of the irreducible
and projective representations.

The (additive) Grothendieck group K0(C) of an Abelian category C is the quotient
of the free Abelian group generated by isomorphism classes [U ] of objects in C by the
subgroup generated by the relations [K] + [Q] = [M] for each short exact sequence
0 → K → M → Q → 0. If C is also monoidal and the tensor (fusion) functor � is
exact, then we obtain a ring structure on K0(C) via [U ] · [V ] = [U � V ].

Denote the category of Wp-modules by Cp. The Grothendieck group is freely generated
by the 2p classes of the irreducible representations

[
U±

s

]
, s = 1, . . . , p. From [29,

section 2.4] we have the exact sequences

0 → Uν
s → Mν

ε,s → U−ν
p−s → 0, 0 → Uν

s → Nν
s → U−ν

p−s ⊕ U−ν
p−s → 0, (C.1)

where s = 1, . . . , p − 1 and ν, ε = ±; in addition we have the first sequence of (4.3). These
give the following identities in K0(Cp):[
P ν

s

] = 2
[
Uν

s

]
+ 2

[
U−ν

p−s

]
,

[
Nν

s

] = [
Uν

s

]
+ 2

[
U−ν

p−s

]
,

[
Mν

±,s

] = [
Uν

s

]
+

[
U−ν

p−s

]
.

(C.2)

Since the exact sequences split when considered as sequences of graded vector spaces (and
not as sequences of Wp-modules) the identities (C.2) are sum rules for the characters of the
corresponding representations.

Since Mν
±,s are submodules of Nν

s , the exact sequence 0 → Mν
±,s → Nν

s → X → 0
implies the relation

[
Nν

s

] = [
Mν

±,s

]
+ [X], which together with (C.2) shows X ∼= U−ν

p−s . A
similar argument shows that in 0 → Mν

ε,s → P ν
s → Y → 0 we either have Y ∼= M−ν

±ε,p−s

(since the quotient Nν
s

/
Mν

ε,s
∼= U−ν

p−s is embedded in P ν
s

/
Mν

ε,s
∼= Y ) or Y ∼= Uν

s ⊕ U−ν
p−s . The

second possibility is excluded since P ν
s is already the projective cover of Uν

s . The choice of

sign in Y ∼= M−ν
±ε,p−s is a convention which can be reversed by redefining M±, new

ε,s = M
±, old
±ε,s .

We fix the convention as stated in (4.3).
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Assuming that the tensor (fusion) functor on Cp is exact, in [29] the following conjecture
for the ring structure on K0(Cp) is made (we follow the exposition in [32, section 6.3]). The
product is commutative, and ordering the factors such that 1 � t � s � p we have[

Uµ
s

] · [
Uν

t

] =
t∑

i=1

[
Û

µν

s−t+2i−1

]
,

[
Û±

x

] =
{[

U±
x

]
for 1 � x � p,[

U±
2p−x

]
+ 2

[
U∓

x−p

]
for p + 1 � x � 2p − 1.

(C.3)

The Grothendieck ring does not determine the fusion product of representations uniquely.
However, we can arrive at a convincing proposal for the fusion product of irreducible and
projective representations using the analysis of the fusion of Virasoro (rather than Wp)
representations in [26]. This leads to the following natural ansatz for the fusion product
of two irreducible Wp-representations:

Uµ
s � Uν

t =
min(s+t−1,2p−s−t−1)⊕

r=|s−t |+1;2
Uµν

r ⊕
M⊕

r=2p−s−t+1;2
P µν

r where

M =
{
p − 1 if p + s + t even,

p if p + s + t odd.
(C.4)

The ‘; 2’ means the above direct sums are taken in steps of 2. On the level of the Grothendieck
ring (C.4) is equivalent to (C.3). Note also that U−

1 is a simple current, U−
1 � Uε

s = U−ε
s .

According to proposition 2.2 in [58], tensor (fusion) products involving at least one
projective module are already fixed by the Grothendieck ring (to apply this result we need to
assume that Cp is a finite tensor category, see [58] for details). The proposition states that

Pi � Z =
⊕

j,k∈Irr

Ni
kj [Z : Uj ]Pk, (C.5)

where, for j ∈ Irr, Uj is the simple object with label j, Pj its projective cover, and Z an
arbitrary object in Cp. The Ni

kj are the structure constants of the Grothendieck ring (C.3),
[Uk] · [Uj ] = ∑

i∈Irr N
i
kj [Ui] and [Z : Uj ] ∈ Z�0 gives the decomposition of Z in K0(C) as

[Z] = ∑
j∈Irr[Z : Uj ][Uj ].

In writing (C.5) we have assumed that the simple objects are self-dual, i.e. that for the
Wp-representations we have U±∗

s
∼= U±

s . (The statement without this assumption can be found
in [58, prop. 2.2].) We will also assume that P ±∗

s
∼= P ±

s .
Equations (C.4) and (C.5) determine now all fusion products U

µ
s � Uν

t , U
µ
s � P ν

t and
P

µ
s � P ν

t uniquely. Explicitly, we find that

Uµ
s � P ν

t =
min(s+t−1,2p−s−t−1)⊕

r=|s−t |+1;2
P µν

r ⊕
M⊕

r=2p−s−t+1;2
2P µν

r ⊕
M̂⊕

r=p+1+t−s;2
2P −µν

r for t � p − 1, (C.6)

where M is defined as in (C.4) and

M̂ =
{
p − 1 if s + t even
p if s + t odd.

(C.7)

Finally,

P µ
s � P ν

t = 2Uµ
s � P ν

t ⊕ 2U
−µ
p−s � P ν

t for s, t � p − 1, (C.8)

where the right-hand side is defined by (C.6). It is straightforward to check that the
fusion product defined by (C.4), (C.6) and (C.8) is compatible with the product (C.3) of
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the Grothendieck ring. We have also tested for a large number of values for p that the fusion
product is associative (as it must be).

Let us also compare our proposal for the fusion products with the results in [65, section
6], which are based on generalized versions of the Verlinde formula. Formula (C.4) agrees
with [65, equation (6.16)] if we identify U+

s = [h1,s], U−
s = [h1,3p−s] and P +

s = [̃h1,2p−s].
However, the method used in [65] does not distinguish between P +

s and P −
p−s . Keeping this in

mind, one can recover [65, equation (6.19)] by starting from (C.6) and replacing in addition
P −

s �→ [̃h1,p+s].
To find the dimension of the intertwiner spaces HomV

(
P

µ
s , P ν

t

)
one can proceed as

follows. First note that by the properties of duals and by uniqueness of the projective cover
we have

HomV
(
P µ

s , P ν
t

) ∼= HomV
(
P µ

s � P ν∗
t , U+

0

)
, dim HomV

(
P µ

s , U+
0

) = δµ,+δs,0. (C.9)

As mentioned above we assume that P ±∗
s

∼= P ±
s . To obtain the dimension of HomV

(
P

µ
s , P ν

t

)
it is thus sufficient to compute the multiplicity of P +

0 in P
µ
s � P ν

t . From (C.5) we find

P µ
s � P ν

t
∼=

[
P ν

t : Uµ
s

]
P +

0 ⊕ (other projectives). (C.10)

The multiplicity in K0(Cp) follows from (C.2) to be
[
P ν

t : U
µ
s

] = 2δν,µδs,t + 2δν,−µδs,p−t .
This shows that the dimension of the intertwiner spaces is indeed as proposed in (4.6).

Appendix D. The structure of Ĥs/Ns

In this appendix we want to prove (4.26). To do so we recall that Nε
s is a subrepresentation

of P ε
s . In each generalized eigenspace

(
P ε

s

)
h

of P ε
s of eigenvalue h choose a sub-vector space(

V ε
s

)
h

such that
(
P ε

s

)
h

= (
V ε

s

)
h

⊕ (
Nε

s

)
h
. In words,

(
V ε

s

)
h

and
(
Nε

s

)
h

have intersection {0}
and together span

(
P ε

s

)
h
. We will write V ε

s = ⊕
h∈R

(
V ε

s

)
h
. The vector space V ε

s is not a
Wp-subrepresentation of P ε

s .
Consider the projectors �ε

s : P ε
s → P ε

s which act as the identity on Nε
s , and as zero on

V ε
s (these are not intertwiners of the Wp-action). Using the �ε

s we can define a projector
�s : Ĥs → Ĥs by �s = (

�+
s ⊗ īd

) ⊕ (
�−

p−s ⊗ īd
)
. By construction we have

ker(�s) = (
V +

s ⊗ P̄ +∗
s

) ⊕ (
V −

p−s ⊗ P̄ −∗
p−s

)
. (D.1)

It is proved in the following subsection that the restriction of �s to Ns is injective. This
implies that Ns ∩ ker(�s) = {0}. Consider the quotient Ĥs/Ns , and for an element x ∈ Ĥs

denote the class in Ĥs/Ns by [x]. We will show that every element of Ĥs/Ns can be written
as [k] with k ∈ ker(�s). This then implies that Ns and ker(�s) together span Ĥs .

It is enough to consider elements of Ĥs of the form (v + η) ⊗ q̄ where either
v ∈ V +

s , η ∈ N+
s , q̄ ∈ P̄ +∗

s , or v ∈ V −
p−s , η ∈ N−

p−s , q̄ ∈ P̄ −∗
p−s . Take the first case, for

concreteness. The map eν : P −
p−s → P +

s has image M+
ν,s and kernel M−

ν,p−s . This implies that
eν maps N−

p−s ⊂ P −
p−s to U+

s and that we can write an arbitrary element mν ∈ M+
ν,s ⊂ P +

s as
mν = eν(w) + u for appropriate w ∈ V −

p−s , u ∈ U+
s . The element u in turn can be expressed

as u = e−(e+(w
′)) for some w′ ∈ V +

s . Altogether we see that for any η ∈ N+
s

∃ w+, w− ∈ V −
p−s , w0 ∈ V +

s : η = e+(w+) + e−(w−) + e−(e+(w0)). (D.2)

Since the images of id ⊗ ē∗
ν − eν ⊗ īd are in Ns , it follows that in the quotient space

Ĥs/Ns[η ⊗ q̄] = [w+ ⊗ ē∗
+(q̄)] + [w− ⊗ ē∗

−(q̄)] + [w0 ⊗ ē∗
+((ē

∗
−(q̄))]. Thus [(v + η) ⊗ q̄] can

be written as a sum of four terms all of which lie in ker(�s). Thus we have shown that

Ĥs = (
V +

s ⊗ P̄ +∗
s

) ⊕ (
V −

p−s ⊗ P̄ −∗
p−s

) ⊕ Ns (D.3)
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as a vector space with generalized (L0, L̄0)-grading. Since �s commutes with the action of
W̄p and since Ns is a Wp × W̄p-subrepresentation, the decomposition (D.3) is also preserved
by the W̄p-action (but not by the Wp-action).

Finally, we need to show that V ε
s is isomorphic (as a graded vector space) to Uε

s . To
see this we observe that the surjection πε

s : P ε
s � Uε

s in the first exact sequence in (4.3) has
kernel Nε

s . In particular, πε
s restricts to a bijection V ε

s → Uε
s which is compatible with the

generalized L0-grading (but not with the action of the Wp-modes, or even with the action of
L0 itself). This then proves (4.26).

D.1. The projection �s is injective on Ns

Recall the decomposition
(
P ε

s

)
h

= (
V ε

s

)
h

⊕ (
Nε

s

)
h

chosen above, and the inclusions (4.2).
Let us also choose subspaces

(
Uε

s

)
h

and
(
Sε

±,s

)
h

of
(
Nε

s

)
h

such that
(
Uε

s

)
h

is the generalized
L0-eigenspace of eigenvalue h of Uε

s ⊂ P ε
s , as well as

(
Mε

±,s

)
h

= (
Sε

±,s

)
h

⊕ (
Uε

s

)
h
. As was

the case for V ε
s , the subspaces Sε

±,s = ⊕
h∈R

(
Sε

±,s

)
h

are not Wp-submodules. We have now
chosen the direct sum decompositions

P ε
s = V ε

s ⊕ Sε
+,s ⊕ Sε

−,s ⊕ Uε
s , Nε

s = Sε
+,s ⊕ Sε

−,s ⊕ Uε
s , Mε

±,s = Sε
±,s ⊕ Uε

s .

(D.4)

According to the construction in section 4.3 every element k of Ns can be written as a
sum of the form

k =
∑
ν,α

(
pν

α ⊗ ē∗
ν

(
q̄ν

α

) − eν

(
pν

α

) ⊗ q̄ν
α

)
+

∑
ν,β

(
xν

β ⊗ ē∗
ν

(
ȳν

β

) − eν

(
xν

β

) ⊗ ȳν
β

)
, (D.5)

where pν
α ∈ P +

s , q̄ν
α ∈ P̄ −∗

p−s and xν
β ∈ P −

p−s , ȳ
ν
β ∈ P̄ +∗

s , for ν = ±. We have to show that for
any k ∈ Ns

�s(k) = 0 ⇒ k = 0, (D.6)

where �s is the projector defined just before (D.1). Since the image of eν lies in Nε
s , we have

�s ◦ eν = eν . Thus

�s(k) =
∑
ν,α

(
�s

(
pν

α

) ⊗ ē∗
ν

(
q̄ν

α

) − eν

(
pν

α

) ⊗ q̄ν
α

)
+

∑
ν,β

(
�s

(
xν

β

) ⊗ ē∗
ν

(
ȳν

β

) − eν

(
xν

β

) ⊗ ȳν
β

)
.

(D.7)

The summands in the sums over α and β lie in different direct summands of Ĥs , and so the
equation �s(k) = 0 implies that both sums in (D.7) have to vanish separately. Consider the
first sum. We will prove below that∑
ν,α

�s

(
pν

α

) ⊗ ē∗
ν

(
q̄ν

α

) − eν

(
pν

α

) ⊗ q̄ν
α = 0 ⇒

∑
ν,α

pν
α ⊗ ē∗

ν

(
q̄ν

α

) − eν

(
pν

α

) ⊗ q̄ν
α = 0.

(D.8)

The corresponding statement for the second sum in (D.7) can be seen analogously, and the
two statements together imply (D.6), i.e. that �s is injective on Ns .

According to the decomposition (D.4) the vectors pν
α ∈ P +

s can be written as

pν
α = vν

α + mν
α,+ + mν

α,− + uν
α, where vν

α ∈ V +
s , mν

α,± ∈ S+
±,s , uν

α ∈ U+
s .

(D.9)

Furthermore we have the induced decomposition of the dual spaces P ε∗
s = V ε∗

s ⊕Sε∗
+,s ⊕Sε∗

−,s ⊕
Uε∗

s and we will write q̄ν
α as

q̄ν
α = v̄ν

α + m̄ν
α,+ + m̄ν

α,− + ūν
α, where v̄ν

α ∈ V̄ −∗
p−s , m̄ν

α,± ∈ S̄−∗
±,p−s , ūν

α ∈ Ū−∗
p−s .

(D.10)
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Here it is understood that, despite the similarity in notation, vν
α and v̄ν

α are independent, and
similar for the other vectors in (D.9) and (D.10). Now for eν acting on P +

s we have

ker(eν) = S+
ν,s ⊕ U+

s , ker(e− ◦ e+) = S+
+,s ⊕ S+

−,s ⊕ U+
s , (D.11)

and eν acts injectively on V +
s ⊕ S+

−ν,s , while n = e− ◦ e+ is injective on V +
s . Dually, for ē∗

ν

acting on P̄ −∗
p−s we have

ker(ē∗
ν) = V̄ −∗

p−s ⊕ S̄−∗
−ν,p−s , ker(ē∗

+ ◦ ē∗
−) = V̄ −∗

p−s ⊕ S̄−∗
+,p−s ⊕ S̄−∗

−,p−s , (D.12)

ē∗
ν is injective on S̄−∗

ν,p−s ⊕ Ū−∗
p−s and n̄∗ = ē∗

+ ◦ ē∗
− is injective on Ū−∗

p−s . Using these
decompositions and kernels, we can write the condition of the implication (D.8) as∑
ν,α

((
mν

α,+ + mν
α,− + uν

α

) ⊗ ē∗
ν

(
m̄ν

α,ν + ūν
α

) − eν

(
vν

α + mν
α,−ν

) ⊗ (
v̄ν

α + m̄ν
α,+ + m̄ν

α,− + ūν
α

)) = 0.

(D.13)

When applying e−µ ⊗ n̄∗ to this equation only the second term of the sum survives and we
obtain, for µ = ±,∑

α

e−µ

(
eµ

(
vµ

α

)) ⊗ n̄∗(ūµ
α

) = 0 ⇒
∑

α

vµ
α ⊗ ūµ

α = 0, (D.14)

where in the implication we used that n is injective on V +
s and n̄∗ is injective on Ū−∗

p−s . Applying
id ⊗ n̄∗ to (D.13) gives∑
ν,α

eν

(
vν

α + mν
α,−ν

) ⊗ n̄∗(ūν
α

) = 0 ⇒
∑
ν,α

eν

(
mν

α,−ν

) ⊗ n̄∗(ūν
α

) = 0, (D.15)

where the implication follows from the result (D.14). Finally, applying e−µ ⊗ ē∗
µ to (D.13)

results in ∑
α

(
e−µ

(
m−µ

α,µ) ⊗ n̄∗(ū−µ
α

) − n
(
vµ

α

) ⊗ ē∗
µ

(
m̄µ

α,µ + ūµ
α

)) = 0. (D.16)

Summing this equation over µ = ± and using (D.15) removes the first term, so that we are
left with∑
α,µ

n
(
vµ

α

) ⊗ ē∗
µ

(
m̄µ

α,µ + ūµ
α

)) = 0 ⇒
∑
α,µ

vµ
α ⊗ ē∗

µ

(
m̄µ

α,µ + ūµ
α

) = 0, (D.17)

where for the implication one uses that n is injective on V +
s . Adding (D.17) to (D.13) gives

precisely the result of the implication (D.8), thus completing the proof of (D.8).
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[22] Götz G, Quella T and Schomerus V 2007 The WZNW model on PSU(1,1/2) J. High Energy Phys.
JHEP0703(2007)003 (Preprint hep-th/0610070)

[23] Saleur H and Schomerus V 2007 On the SU(2/1) WZNW model and its statistical mechanics applications Nucl.
Phys. B 775 312 (Preprint hep-th/0611147)

[24] Quella T and Schomerus V 2007 Free fermion resolution of supergroup WZNW models Preprint
hep-th/0706.0744

[25] Gurarie V 1993 Logarithmic operators in conformal field theory Nucl. Phys. B 410 535 (Preprint
hep-th/9303160)

[26] Gaberdiel M R and Kausch H G 1996 Indecomposable fusion products Nucl. Phys. B 477 293 (Preprint
hep-th/9604026)

[27] Milas A 2002 Weak modules and logarithmic intertwining operators for vertex operator algebras Contemp.
Math. 297 201 (Preprint math.qa/0101167)

[28] Miyamoto M 2002 Modular invariance of vertex operator algebras satisfying C2-cofiniteness Preprint
math.QA/0209101

[29] Fuchs J, Hwang S, Semikhatov A M and Tipunin I Y 2004 Nonsemisimple fusion algebras and the Verlinde
formula Commun. Math. Phys. 247 713 (Preprint hep-th/0306274)

[30] Huang Y Z, Lepowsky J and Zhang L 2006 A logarithmic generalization of tensor product theory for modules
for a vertex operator algebra Int. J. Math. 17 975 (Preprint math.qa/0311235)

[31] Feigin B L, Gainutdinov A M, Semikhatov A M and Tipunin I Y 2006 Kazhdan–Lusztig correspondence
for the representation category of the triplet W-algebra in logarithmic conformal field theory Theor. Math.
Phys. 148 1210 (Preprint math.qa/0512621)

[32] Fuchs J 2006 On non-semisimple fusion rules and tensor categories Preprint hep-th/0602051
[33] Huang Y Z, Lepowsky J and Zhang L 2006 Logarithmic tensor product theory for generalized modules for a

conformal vertex algebra: I Preprint math.qa/0609833
[34] Flohr M A I 2003 Bits and pieces in logarithmic conformal field theory Int. J. Mod. Phys. A 18 4497 (Preprint

hep-th/0111228)
[35] Gaberdiel M R 2003 An algebraic approach to logarithmic conformal field theory Int. J. Mod. Phys. A 18 4593

(Preprint hep-th/0111260)
[36] Kawai S 2003 Logarithmic conformal field theory with boundary Int. J. Mod. Phys. A 18 4655 (Preprint

hep-th/0204169)
[37] Kausch H G 1991 Extended conformal algebras generated by a multiplet of primary fields Phys. Lett. B 259 448

28

http://dx.doi.org/10.1016/S0550-3213(98)00331-9
http://www.arxiv.org/abs/cond-mat/9801055
http://dx.doi.org/10.1088/0305-4470/35/27/101
http://www.arxiv.org/abs/cond-mat/9911392
http://dx.doi.org/10.1016/S0370-2693(02)02069-5
http://www.arxiv.org/abs/hep-th/0203105
http://dx.doi.org/10.1023/B:JOSS.0000003102.81727.fd
http://www.arxiv.org/abs/cond-mat/0301430
http://www.arxiv.org/abs/hep-th/0407143
http://www.arxiv.org/abs/hep-th/0409105
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.002
http://www.arxiv.org/abs/cond-mat/0410434
http://www.arxiv.org/abs/cond-mat/0609284
http://www.arxiv.org/abs/hep-th/0607232
http://www.arxiv.org/abs/hep-th/0701117
http://www.arxiv.org/abs/cond-mat/0701259
http://dx.doi.org/10.1016/0550-3213(92)90118-U
http://www.arxiv.org/abs/hep-th/9203069
http://dx.doi.org/10.1016/j.nuclphysb.2005.11.013
http://www.arxiv.org/abs/hep-th/0510032
http://dx.doi.org/10.1088/1126-6708/2007/0703/003
http://www.arxiv.org/abs/hep-th/0610070
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.031
http://www.arxiv.org/abs/hep-th/0611147
http://www.arxiv.org/abs/hep-th/0706.0744
http://dx.doi.org/10.1016/0550-3213(93)90528-W
http://www.arxiv.org/abs/hep-th/9303160
http://dx.doi.org/10.1016/0550-3213(96)00364-1
http://www.arxiv.org/abs/hep-th/9604026
http://www.arxiv.org/abs/math.qa/0101167
http://www.arxiv.org/abs/math.QA/0209101
http://dx.doi.org/10.1007/s00220-004-1058-y
http://www.arxiv.org/abs/hep-th/0306274
http://dx.doi.org/10.1142/S0129167X06003758
http://www.arxiv.org/abs/math.qa/0311235
http://dx.doi.org/10.1007/s11232-006-0113-6
http://www.arxiv.org/abs/math.qa/0512621
http://www.arxiv.org/abs/hep-th/0602051
http://www.arxiv.org/abs/math.qa/0609833
http://dx.doi.org/10.1142/S0217751X03016859
http://www.arxiv.org/abs/hep-th/0111228
http://dx.doi.org/10.1142/S0217751X03016860
http://www.arxiv.org/abs/hep-th/0111260
http://dx.doi.org/10.1142/S0217751X03016884
http://www.arxiv.org/abs/hep-th/0204169
http://dx.doi.org/10.1016/0370-2693(91)91655-F


J. Phys. A: Math. Theor. 41 (2008) 075402 M R Gaberdiel and I Runkel

[38] Gaberdiel M R and Kausch H G 1996 A rational logarithmic conformal field theory Phys. Lett. B 386 131
(Preprint hep-th/9606050)

[39] Gaberdiel M R and Kausch H G 1999 A local logarithmic conformal field theory Nucl. Phys. B 538 631 (Preprint
hep-th/9807091)

[40] Gaberdiel M R and Runkel I 2006 The logarithmic triplet theory with boundary J. Phys. A: Math. Gen. 39 14745
(Preprint hep-th/0608184)

[41] Kawai S and Wheater J F 2001 Modular transformation and boundary states in logarithmic conformal field
theory Phys. Lett. B 508 203 (Preprint hep-th/0103197)

[42] Kogan I I and Wheater J F 2000 Boundary logarithmic conformal field theory Phys. Lett. B 486 353 (Preprint
hep-th/0003184)

[43] Ishimoto Y 2001 Boundary states in boundary logarithmic CFT Nucl. Phys. B 619 415 (Preprint
hep-th/0103064)

[44] Bredthauer A and Flohr M A I 2002 Boundary states in c = −2 logarithmic conformal field theory Nucl. Phys.
B 639 450 (Preprint hep-th/0204154)

[45] Bredthauer A 2003 Boundary states and symplectic fermions Phys. Lett. B 551 378 (Preprint hep-th/0207181)
[46] Kausch H G 2000 Symplectic fermions Nucl. Phys. B 583 513 (Preprint hep-th/0003029)
[47] Fuchs J, Runkel I and Schweigert C 2002 TFT construction of RCFT correlators: I. Partition functions Nucl.

Phys. B 646 353 (Preprint hep-th/0204148)
[48] Fuchs J, Runkel I and Schweigert C 2005 TFT construction of RCFT correlators: IV. Structure constants and

correlation functions Nucl. Phys. B 715 539 (Preprint hep-th/0412290)
[49] Fjelstad J, Fuchs J, Runkel I and Schweigert C 2006 TFT construction of RCFT correlators: V. Proof of modular

invariance and factorisation Theo. Appl. Cat. 16 342 (Preprint hep-th/0503194)
[50] Fjelstad J, Fuchs J, Runkel I and Schweigert C 2006 Uniqueness of open/closed rational CFT with given algebra

of open states Preprint hep-th/0612306
[51] Runkel I 1999 Boundary structure constants for the A-series Virasoro minimal models Nucl. Phys. B 549 563

(Preprint hep-th/9811178)
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